77 research outputs found

    Cumulative clinical experience from over a decade of use of levofloxacin in community-acquired pneumonia: critical appraisal and role in therapy

    Get PDF
    Levofloxacin is the synthetic L-isomer of the racemic fluoroquinolone, ofloxacin. It interferes with critical processes in the bacterial cell such as DNA replication, transcription, repair, and recombination by inhibiting bacterial topoisomerases. Levofloxacin has broad spectrum activity against several causative bacterial pathogens of community-acquired pneumonia (CAP). Oral levofloxacin is rapidly absorbed and is bioequivalent to the intravenous formulation such that patients can be conveniently transitioned between these formulations when moving from the inpatient to the outpatient setting. Furthermore, levofloxacin demonstrates excellent safety, and has good tissue penetration maintaining adequate concentrations at the site of infection. The efficacy and tolerability of levofloxacin 500 mg once daily for 10 days in patients with CAP are well established. Furthermore, a high-dose (750 mg) and short-course (5 days) of once-daily levofloxacin has been approved for use in the US in the treatment of CAP, acute bacterial sinusitis, acute pyelonephritis, and complicated urinary tract infections. The high-dose, short-course levofloxacin regimen maximizes its concentration-dependent antibacterial activity, decreases the potential for drug resistance, and has better patient compliance

    Staphylococcus aureus Protein A Disrupts Immunity Mediated by Long-Lived Plasma Cells

    Get PDF
    Infection with Staphylococcus aureus does not induce long-lived protective immunity for reasons that are not completely understood. Human and murine vaccine studies support a role for antibodies in protecting against recurring infections, but S. aureus modulates the B cell response through expression of Staphylococcal Protein A (SpA), a surface protein that drives polyclonal B cell expansion and induces cell death in the absence of co-stimulation. In this murine study, we show that SpA altered the fate of plasmablasts and plasma cells (PCs) by enhancing the short-lived extrafollicular response and reducing the pool of bone marrow (BM)-resident long-lived PCs (LLPCs). The absence of LLPCs was associated with a rapid decline in antigen-specific, class-switched antibody. In contrast, when previously inoculated mice were challenged with isogenic ฮ”spa S. aureus, cells proliferated in the BM survival niches and sustained long-term antibody titers. The effects of SpA on PC fate were limited to the secondary response, as antibody levels and the formation of B cell memory occurred normally during the primary response in mice inoculated with either WT or ฮ”spa S. aureus. Thus, failure to establish long-term protective antibody titers against S. aureus was not a consequence of diminished formation of B cell memory; instead, SpA reduced the proliferative capacity of PCs that entered the BM, diminishing the number of cells in the long-lived pool

    Staphylococcus aureus Surface Protein SdrE Binds Complement Regulator Factor H as an Immune Evasion Tactic

    Get PDF
    Similar to other highly successful invasive bacterial pathogens, Staphylococcus aureus recruits the complement regulatory protein factor H (fH) to its surface to inhibit the alternative pathway of complement. Here, we report the identification of the surface-associated protein SdrE as a fH-binding protein using purified fH overlay of S. aureus fractionated cell wall proteins and fH cross-linking to S. aureus followed by mass spectrometry. Studies using recombinant SdrE revealed that rSdrE bound significant fH whether from serum or as a purified form, in both a time- and dose-dependent manner. Furthermore, rSdrE-bound fH exhibited cofactor functionality for factor I (fI)-mediated cleavage of C3b to iC3b which correlated positively with increasing amounts of fH. Expression of SdrE on the surface of the surrogate bacterium Lactococcus lactis enhanced recruitment of fH which resulted in increased iC3b generation. Moreover, surface expression of SdrE led to a reduction in C3-fragment deposition, less C5a generation, and reduced killing by polymorphonuclear cells. Thus, we report the first identification of a S. aureus protein associated with the staphylococcal surface that binds factor H as an immune evasion mechanism

    Inhibition of Immune Complex Complement Activation and Neutrophil Extracellular Trap Formation by Peptide Inhibitor of Complement C1

    No full text
    Two major aspects of systemic lupus erythematosus (SLE) pathogenesis that have yet to be targeted therapeutically are immune complex-initiated complement activation and neutrophil extracellular trap (NET) formation by neutrophils. Here, we report in vitro testing of peptide inhibitor of complement C1 (PIC1) in assays of immune complex-mediated complement activation in human sera and assays for NET formation by human neutrophils. The lead PIC1 derivative, PA-dPEG24, was able to dose-dependently inhibit complement activation initiated by multiple types of immune complexes (IC), including C1-anti-C1q IC, limiting the generation of pro-inflammatory complement effectors, including C5a and membrane attack complex (sC5b-9). In several instances, PA-dPEG24 achieved complete inhibition with complement effector levels equivalent to background. PA-dPEG24 was also able to dose-dependently inhibit NET formation by human neutrophils stimulated by PMA, MPO, or immune complex activated human sera. In several instances PA-dPEG24 achieved complete inhibition with NETosis with quantitation equivalent to background levels. These results suggest that PA-dPEG24 inhibition of NETs occurs by blocking the MPO pathway of NET formation. Together these results demonstrate that PA-dPEG24 can inhibit immune complex activation of the complement system and NET formation. This provides proof of concept that peptides can potentially be developed to inhibit these two important contributors to rheumatologic pathology that are currently untargeted by available therapies

    Acute MRSA Sinusitis with Intracranial Extension and Marginal Vancomycin Susceptibility

    Get PDF
    Methicillin resistant Staphylococcus aureus (MRSA) is increasingly being described as a cause of acute sinusitis. We present a patient with acute MRSA sinusitis complicated by rapid intracranial extension, marginal vancomycin susceptibility (MIC = 2โ€‰mg/L), delayed drainage of intracranial abscess, and subsequent development of rifampin resistance. Given the relatively high risk of intracranial extension of severe acute bacterial sinusitis and high mortality associated with invasive MRSA infections, we suggest early surgical drainage of intracranial abscesses in these circumstances. We believe this is important given the limited intracranial penetration of currently available treatment options for MRSA, especially those with a vancomycin minimal inhibitory concentration (MIC) of โ‰ฅ2โ€‰mg/L

    Peptide inhibitor of complement C1 (PIC1), a novel suppressor of classical pathway activation: mechanistic studies and clinical potential

    No full text
    The classical pathway of complement plays multiple physiological roles including modulating immunological effectors initiated by adaptive immune responses as well as an essential homeostatic role in the clearance of damaged self-antigens. However, dysregulated classical pathway activation is associated with antibody-initiated, inflammatory diseases processes like cold agglutinin disease (CAD), acute intravascular hemolytic transfusion reaction (AIHTR) and acute/hyperacute transplantation rejection. To date, only one putative classical pathway inhibitor, C1 esterase inhibitor (C1-INH), is currently commercially available and its only approved indication is for replacement treatment in hereditary angioedema (HAE), which is predominantly a kinin pathway disease. Given the variety of disease conditions in which the classical pathway is implicated, development of therapeutics that specifically inhibit complement initiation represents a major unmet medical need. Our laboratory has identified a peptide that specifically inhibits the classical and lectin pathways of complement. In vitro studies have demonstrated that these Peptide Inhibitors of Complement C1 (PIC1) bind to the collagen-like region of the initiator molecule of the classical pathway, C1q. PIC1 binding to C1q blocks activation of the associated serine proteases (C1s-C1r-C1r-C1s) and subsequent downstream complement activation. Rational design optimization of PIC1 has resulted in the generation of a highly potent derivative of fifteen amino acids. PIC1 inhibits classical pathway mediated complement activation in ABO incompatibility in vitro as well as inhibiting classical pathway activation in vivo in rats. This review will focus on the pre-clinical development of PIC1 and discuss its potential as a therapeutic in antibody-mediated classical pathway disease, specifically AIHTR

    Trichophyton as a Rare Cause of Postoperative Wound Infection Resistant to Standard Empiric Antimicrobial Therapy

    No full text
    Fungal infections are rare causes of acute surgical wound infections, but Candida is not an infrequent etiology in chronic wound infections. Trichophyton species is a common cause of tinea capitis but has not been reported as a cause of neurosurgical wound infection. We report a case of Trichophyton tonsurans causing a nonhealing surgical wound infection in a 14-year-old male after hemicraniectomy. His wound infection was notable for production of purulent exudate from the wound and lack of clinical improvement despite empiric treatment with multiple broad-spectrum antibiotics targeting typical bacterial causes of wound infection. Multiple wound cultures consistently grew Trichophyton fungus, and his wound infection clinically improved rapidly after starting terbinafine and discontinuing antibiotics

    Inhibition of complement activation, myeloperoxidase, NET formation and oxidant activity by PIC1 peptide variants.

    No full text
    BackgroundA product of rational molecular design, PA-dPEG24 is the lead derivative of the PIC1 family of peptides with multiple functional abilities including classical complement pathway inhibition, myeloperoxidase inhibition, NET inhibition and antioxidant activity. PA-dPEG24 is composed of a sequence of 15 amino acid, IALILEPICCQERAA, and contains a monodisperse 24-mer PEGylated moiety at its C terminus to increase aqueous solubility. Here we explore a sarcosine substitution scan of the PA peptide to evaluate impacts on solubility in the absence of PEGylation and functional characteristics.MethodsSixteen sarcosine substitution variants were synthesized and evaluated for solubility in water. Aqueous soluble variants were then tested in standard complement, myeloperoxidase, NET formation and antioxidant capacity assays.ResultsSix sarcosine substitution variants were aqueous soluble without requiring PEGylation. Substitution with sarcosine of the isoleucine at position eight yielded a soluble peptide that surpassed the parent molecule for complement inhibition and myeloperoxidase inhibition. Substitution with sarcosine of the cysteine at position nine improved solubility, but did not otherwise change the functional characteristics compared with the parent compound. However, replacement of both vicinal cysteine residues at positions 9 and 10 with a single sarcosine residue reduced functional activity in most of the assays tested.ConclusionsSeveral of the sarcosine PIC1 variant substitutions synthesized yielded improved solubility as well as a number of unanticipated structure-function findings that provide new insights. Several sarcosine substitution variants demonstrate increased potency over the parent peptide suggesting enhanced therapeutic potential for inflammatory disease processes involving complement, myeloperoxidase, NETs or oxidant stress
    • โ€ฆ
    corecore